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Background and purpose: Two aspects of stereotactic radiotherapy (SRT) require clarification: First, are
tumoricidal mechanisms at high-doses/fraction the same as at lower doses? Second, is single
high-dose SRT treatment advantageous for tumor control (TCP) vs. multi-fraction SRT?
Material and methods: We analyzed published TCP data for lung tumors or brain metastases from 2965
SRT patients, covering a wide range of doses and fraction numbers. We used: (a) a linear-quadratic model
(including heterogeneity), which assumes the same mechanisms at all doses, and (b) alternative models
with terms describing distinct tumoricidal mechanisms at high doses.
Results: Both for lung and brain data, the LQ model provided a significantly better fit over the entire range
of treatment doses than did any of the models requiring extra terms at high doses. Analyzing the data as a
function of fractionation (1 fraction vs. >1 fraction), there was no significant effect on TCP in the lung data,
whereas for brain data multi-fraction SRT was associated with higher TCP than single-fraction treatment.
Conclusion: Our analysis suggests that distinct tumoricidal mechanisms do not determine tumor control
at high doses/fraction. In addition, there is evidence suggesting that multi-fraction SRT is superior to
single-dose SRT.
� 2015 The Authors. Published by Elsevier Ireland Ltd. Radiotherapy and Oncology xxx (2015) xxx–xxx
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Stereotactic radiosurgery (SRS) and stereotactic body radiother-
apy (SBRT), also known as stereotactic ablative radiotherapy
(SABR), are becoming increasingly accepted [1]. The spatial accu-
racy of dose delivery using these techniques (hereafter referred
to as stereotactic radiotherapy, SRT) allows substantial dose esca-
lation to the tumor [1].

Over the past three decades, radiotherapy design has been
guided by the linear-quadratic (LQ) model [2–4]. Clinical results,
even for some non-standard scenarios (hyperfractionation [5],
high- vs. low dose-rate brachytherapy [6], prostate hypofractiona-
tion [7]) were consistent with LQ predictions. In contrast to earlier
approaches [8–10], there have been no major failures.

Some investigators have argued that tumor eradication by large
doses/fraction is dominated by distinct biological phenomena (e.g.,
damage to the tumor vasculature) that are qualitatively different
from those operating at lower doses, and therefore are not
accounted for by the LQ model [11–17]. By contrast, others argue
[18,19] that SRT effectiveness is sufficiently explained by increased
tumor doses, which destroy tumors largely through the same
mechanisms that operate at lower doses.

In this paper, therefore, we address the question as to whether
tumoricidal mechanisms at high-doses/fraction are the same as at
lower doses – or are there new mechanisms at play specifically at
high doses? We approach this question by analyzing a large data
set for TCP vs. dose from SRT patients for lung tumors or brain
metastases, covering a wide range of doses and fraction numbers.
We analyze these data with the LQ model, which assumes the same
mechanisms at all doses, and also with alternative models which
incorporate extra terms describing different cell killing mecha-
nisms at high doses.
Materials and methods

Data sets

Using the PubMed and Google Scholar databases, we searched
for articles published in the past 15 years (up to 3/15/2013) that
met the following criteria: (1) the reported radiotherapy regimens
had to be classified as some form of SRT; (2) TCP had to be reported
for P1 year following SRT for brain and/or lung tumors/metas-
tases; (3) the number of fractions, and the dose per fraction had
ta from
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2 Analysis of high-dose effects in SRT
to be specified, preferably for more than one radiotherapy regi-
men; (4) information had to be provided allowing estimation of
doses both to the isocenter and to the periphery (generally at least
80% of the prescribed isocenter dose covered the PTV).

We found 33 publications, which together contained data from
2965 patients, mostly treated for early-stage non-small cell lung
cancer (NSCLC) or brain metastases. We extracted data on TCP val-
ues from 59 treatment regimens (Table 1). For each regimen, we
extracted (or estimated, if it was not reported explicitly) the
Table 1
Summary of the analyzed data sets. The majority of patients in the brain data set were
treated for metastatic brain tumors, and the majority of patients in the lung data set
were treated for early stage non-small cell lung cancer.

Published
data set

Reference Cancer
site

Mean #
of
fractions

Mean isocentral
dose/fraction
(Gy)

# of
patients

Chang [44] Brain 1.0 23.5 10
Chang [44] Brain 1.0 20.0 61
Chang [45] Brain 1.0 21.0 130
Chao [46] Brain 1.0 20.6 50
Chao [46] Brain 1.0 28.8 61
Engenhart [47] Brain 1.0 21.5 57
Lutterbach [48] Brain 1.0 22.5 101
Matsuo [49] Brain 1.0 25.0 30
Matsuo [49] Brain 1.0 50.0 30
Molenaar [50] Brain 1.0 16.9 29
Molenaar [50] Brain 1.0 23.8 29
Molenaar [50] Brain 1.0 28.8 28
Shiau [51] Brain 1.0 25.0 4
Shiau [51] Brain 1.0 33.0 30
Shiau [51] Brain 1.0 41.0 66
Shirato [52] Brain 1.0 25.0 39
Vogelbaum [53] Brain 1.0 30.0 9
Vogelbaum [53] Brain 1.0 36.0 12
Vogelbaum [53] Brain 1.0 48.0 27
Higuchi [54] Brain 3.0 20.0 43
Saitoh [55] Brain 3.0 13.0 15
Saitoh [55] Brain 3.0 14.0 34
Narayana [20] Brain 5.0 6.0 20
Ernst [56] Brain 5.0 7.8 22
Fritz [57] Lung 1.0 30.0 40
Hof [58] Lung 1.0 22.0 10
Hof [58] Lung 1.0 28.0 32
Trakul [59] Lung 1.0 30.0 48
Crabtree [60] Lung 3.0 21.8 76
Fakiris [61] Lung 3.0 26.3 70
Grills [62] Lung 3.0 22.5 209
Grills [62] Lung 3.0 25.0 22
Kopek [63] Lung 3.0 15.0 89
Koto [64] Lung 3.0 15.0 20
Olsen [65] Lung 3.0 21.4 111
Ricardi [66] Lung 3.0 18.8 62
Taremi [67] Lung 3.0 23.5 29
Taremi [67] Lung 3.0 22.5 19
Timmerman [68] Lung 3.0 22.5 55
Ng [69] Lung 3.2 18.9 20
Chang [70] Lung 4.0 15.2 130
Nagata [71] Lung 4.0 12.0 45
Shibamoto [72] Lung 4.0 11.0 4
Shibamoto [72] Lung 4.0 12.0 124
Shibamoto [72] Lung 4.0 13.0 52
Shirata [73] Lung 4.0 12.0 45
Taremi [67] Lung 4.0 15.1 41
Trakul [59] Lung 4.0 15.0 60
Grills [62] Lung 4.2 15.0 172
Haasbeek [74] Lung 4.9 15.5 193
Olsen [65] Lung 5.0 10.7 8
Olsen [65] Lung 5.0 11.9 11
Takeda [75] Lung 5.0 12.5 63
Grills [62] Lung 5.1 13.9 102
Koto [64] Lung 8.0 7.5 11
Shirata [73] Lung 8.0 7.5 29
Taremi [67] Lung 8.0 9.6 9
Taremi [67] Lung 10.0 5.8 10
Shirata [73] Lung 15.0 4.0 7
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number of treated patients. The majority of treatment regimens
(46 out of 59) were performed using LINAC equipment. There were
no 3D-CRT regimens and only one IMRT regimen [20]. Median ages
of the treated patients ranged from 52 to 79, with a mean of 67.
Maximum tumor diameters ranged from 2.0 to 10.0 cm, with a
mean of 5.2 cm.

Thirty-one percent of the patients were treated with
single-fraction regimens with a median dose of 19.0 (range: 12.5,
25.0) Gy to the periphery and 25.0 (range: 16.9, 50.0) Gy to the
isocenter. The median number of fractions for the fractionated
regimes was 4 (range: 3, 15), and the median dose per fraction
was 11.4 Gy (range: 3.2, 22.7) to the tumor periphery and
14.5 Gy (range: 4.0, 26.3) to the isocenter. The median TCP was
0.83 (range: 0.16 to 1.0). These values are consistent with previous
studies of SRT (e.g., [21,22]). Increasing the minimum acceptable
time for reported TCP after SRT from 1 years to 3 years did not
change the TCP numbers dramatically (reducing the median TCP
to 0.76), but dramatically reduced the number of available publica-
tions (from 33 to 15).
Radiobiological models

Our overall goal here is to investigate whether the SRT tumor
control data imply that there are new tumoricidal mechanisms
that determine tumor control at high SRT doses – mechanisms
which are not present or have little effect at conventional radio-
therapeutic doses. To accomplish this, we investigate whether
the standard LQ model with heterogeneity can provide as good a
description of the SRT data as can models with extra terms describ-
ing unique high-dose tumor control mechanisms.

The mechanistically-motivated model most often used to
describe radiotherapeutic tumor control is the linear quadratic
model [2–7], which has more recently been used to include hetero-
geneity, within and/or between tumors [23–28]. Consequently, as
an example of a model which assumes that the same tumoricidal
mechanisms operate at all radiation doses, we used the LQ model
with heterogeneous tumor cell radiosensitivity (within a given
tumor). Details of the LQ model, and its extension to heteroge-
neous tumor cell radiosensitivity, are given in Appendix A.

As examples of models which have been developed to describe
the proposed and as yet not fully specified distinct tumoricidal
mechanisms at high radiation doses, we used the Linear
Quadratic Linear (LQL) [29,30], Universal Survival Curve (USC)
[31], the Pade Linear Quadratic (PLQ) [32] formalisms (details are
given in Appendix A).

It may be noted that models such as LQL, USC and PLQ assume
homogeneous tumor sensitivity [29–32], though they are all amen-
able to extension including heterogeneous radiosensitivity. In the
Results section we briefly describe results for heterogeneous ver-
sions of these models. However our primary focus here is to assess
whether the extra high-dose terms in LQL, USC and PLQ are needed
to describe the high dose SRT data, or whether the more estab-
lished effects of heterogeneity are sufficient.
Model fitting and comparison procedures

For each radiotherapy regimen, there were n treated patients,
and local tumor control was achieved for k of them, where k = n
TCP. Each radiobiological model predicted a TCP value (p), based
on which the binomial log likelihood ln[L(p,n,k)] was calculated.
Model fitting involved maximizing the sum of ln[L(p,n,k)] over all
regimens.

Ranking of models by relative goodness of fit, taking into
account sample size and parameter number, was based on the
Akaike information criterion with sample size correction (AICc),
which has gained widespread popularity for this purpose [33,34].
ffects in stereotactic radiation therapy: Analysis of tumor control data from
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For ranking non-linear models, AICc is preferable to methods that
rely on reduced X2 or R2 [35–38]. Another useful property of AICc
is that more than two models can be compared simultaneously,
without the need for models to be ‘‘nested’’ or to belong to the
same class. The model which has the lowest AICc value among
those being compared is the best-fitting model, and those models
which have AICc P 6 units higher than the best-fitting model have
much poorer support from the data. More details about the use of
AICc information criterion are in Appendix B. Confidence intervals
for best-fit model parameter values were estimated by profile like-
lihood [39].

The relative importance of heterogeneous (HET) tumor cell
radiosensitivity, compared with extra parameters which modify
the cellular dose response shape at high doses, was calculated by
the ratio R = WHET/WnoHET, where WHET is the sum of Akaike
weights (described in Appendix B) for the heterogeneous LQL,
PLQ, and USC models fitted to the same data, and WnoHET is the cor-
responding sum of Akaike weights for the homogeneous versions
of the same models.

Results

Visual inspection of best-fit predictions from the analyzed mod-
els (Figs. 1 and 2) suggests that the LQ model with heterogeneous
radiosensitivity provides a much better description of the SRT TCP
data as compared with the models (LQL, PLQ and USC) which
include an extra high-dose mechanism. Statistical analysis support
for this difference in fit quality (by AICc, which accounts for model
complexity as well as closeness of the fit to the data) is over-
whelming both for the lung and for the brain data (Table 2): The
LQL, PLQ and USC formalisms have AICc values which are hundreds
of units higher than the heterogeneous LQ model, suggesting that
these formalisms have effectively no support from the data,
Fig. 1. Best fits to data on early-stage NSCLC from the LQ model with heterogeneous
radiosensitivity. In this and the following figures, error bars represent standard errors.
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compared with the LQ model. In essence, given a biologically plau-
sible initial number (N) of clonogenic tumor cells of 105, the LQL,
PLQ and USC produced TCP dose responses which were too steep
to describe the data well (Figs. 1 and 2). At larger values of N this
effect became even stronger (not shown). Using this same initial
number of clonogenic tumor cells (105), the LQ model with hetero-
geneity predicts a much shallower dose response, thereby bringing
the model predictions much closer to the data. These results
remained qualitatively unchanged regardless of whether we used
doses to the isocenter (Figs. 1 and 2, Table 2), or to the periphery
(not shown). They were also robust in response to altered assump-
tions about the a/b ratio: for example, when the ratio was
increased from 10 Gy to 20 Gy, or was allowed to become freely
adjustable.

The model comparison suggests that the addition of extra
high-dose modification terms (implemented in LQL, USC, and PLQ
models) had much less effect on model performance, than the
inclusion of heterogeneous radiosensitivity, which dramatically
improved agreement with SRT data for all models (Table 2,
Figs. 1 and 2). The relative importance (R) of heterogeneous tumor
cell radiosensitivity, compared with extra parameters which mod-
ify the cellular dose response shape at high doses, was quantified
for the LQL, PLQ and USC as described in Materials and Methods.
For the lung single-fraction data, R P 98.7, and R was effectively
infinite (>109) for all other data subsets. In other words, accounting
for variability in radiosensitivity is more important for describing
the TCP data, than adjusting the details of cell survival curve shape
at high doses.

To assess the effects of SRT fractionation on predicted TCP,
single-fraction and multiple-fraction regimens were fitted sepa-
rately. Using the best-fitting LQ model, for lung tumors fractiona-
tion effects could not be detected with confidence – when the
model was fitted to single-fraction and multiple-fraction data
radiosensitivity (LQ), and from the LQL, PLQ and USC models with homogeneous
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Fig. 2. Best fits to data on brain metastases from the LQ model with heterogeneous radiosensitivity (LQ), and from the LQL, PLQ and USC models with homogeneous
radiosensitivity.

Table 2
Best-fit parameter values and relative fit quality assessment (by DAICc) for the LQ model with heterogeneous radiosensitivity (LQ), and for the LQL, PLQ and USC models with
homogeneous radiosensitivity. Doses to the isocenter were used. The symbol p1 refers to the extra parameter (compared with the LQ model) which is present in the LQL, PLQ and
USC models (but has a different meaning and different units in each model, described in Appendix A). DAICc is the result of an information-theoretic analysis for comparing fit
quality for different models on the same data. DAICc = 0 for the best-fitting model, and models with large DAICc values (>6) have much poorer support from the data. Details are
discussed in the main text and in Appendix B.

Fraction # Cancer site Model a (Gy�1, 95% CI) p1 (95% CI) DAICc

All Lung LQL 0.12 0.12 0.13 0.019 0.016 0.022 1664.4
All Lung PLQ 0.13 0.13 0.13 0.007 0.006 0.008 1661.6
All Lung USC 0.12 0.12 0.12 1.58 1.40 1.66 1607.7
All Lung LQ 0.40 0.39 0.42 – – – 0
1 Lung LQL 0.47 0.45 0.48 1 1 1 21.7
1 Lung PLQ 47.81 46.43 49.27 14.11 13.69 14.52 0
1 Lung USC 0.47 0.30 0.73 2.14 2.07 2.21 21.7
1 Lung LQ 0.43 0.40 0.46 – – – 1.1
>1 Lung LQL 0.26 0.25 0.26 1 1 1 552
>1 Lung PLQ 0.42 0.41 0.42 0.210 0.207 0.214 510.9
>1 Lung USC 0.26 0.21 0.32 3.92 3.88 3.96 552
>1 Lung LQ 0.40 0.39 0.41 – – – 0
All Brain LQL 0.45 0.45 0.45 0.873 0.841 0.913 991.4
All Brain PLQ 0.55 0.55 0.56 0.101 0.099 0.103 986.1
All Brain USC 0.55 0.45 0.64 1.83 1.82 1.84 987.1
All Brain LQ 0.58 0.57 0.59 – – – 0
1 Brain LQL 0.56 0.55 0.56 1 1 1 484.4
1 Brain PLQ 15.85 15.69 16.01 4.16 4.12 4.20 67.7
1 Brain USC 0.56 0.48 0.64 1.80 1.78 1.81 484.3
1 Brain LQ 0.57 0.55 0.58 – – – 0
>1 Brain LQL 0.35 0.34 0.37 1 1 1 148.1
>1 Brain PLQ 4.29 4.17 4.41 2.47 4.39 2.54 0
>1 Brain USC 0.35 0.31 0.41 2.83 2.75 2.90 148.1
>1 Brain LQ 0.66 0.62 0.72 – – – 65.9

4 Analysis of high-dose effects in SRT
separately, the 95% CIs for a overlapped (Table 2). However, for
brain metastases the evidence from the data suggested that mul-
ti-fraction SRT regimens had higher effectiveness than
single-fraction regimens (see a values and non-overlapping 95%
CIs in Table 2, and curves in Fig. 3).
Please cite this article in press as: Shuryak I et al. High-dose and fractionation e
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If the a/b ratio was increased from 10 Gy to 20 Gy and/or if
peripheral doses were used, the evidence became too weak to dif-
ferentiate between best-fit a values for single vs multiple-fraction
SRT. For example, using isocenter doses and an a/b ratio of 20 Gy,
the best-fit LQ a value for single-fraction SRT was 0.857 (95% CI:
ffects in stereotactic radiation therapy: Analysis of tumor control data from
.05.013
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Fig. 3. Best fits of the LQ model with heterogeneous radiosensitivity to data on
brain metastases treated with single-fraction vs. multiple-fraction SRT.
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0.837, 0.877), and for multi-fraction SRT it was 0.834 (95% CI:
0.781, 0.898). Consequently, regardless of the a/b ratio, there was
no support for the hypothesis that single-fraction regimens are
inherently more effective than multiple fractions [14–17], and at
a biologically plausible a/b ratio of 10 Gy there was some support
for higher effectiveness of multiple fractions.
Discussion

The LQ model with heterogeneous radiosensitivity, which
assumes that the same tumoricidal mechanisms operate at all
doses and fraction numbers, provided a much better description
of the SRT tumor control data over the entire dose range than
did any of the models which assumed unique extra tumoricidal
mechanism at high doses. These results, therefore, along with sim-
ilarly motivated analyses [18,19,40], do not support the argument
[11–17] that tumor response to high-dose SRT is fundamentally
different from that which would be predicted from responses at
conventional dose fractionations.

For example, proposed high-dose-specific tumoricidal mecha-
nisms such as damage to the tumor vasculature [11–17] should
enhance the TCP at high doses/fraction, predicting a steep dose
response for TCP. The data, by contrast, support a shallow dose
response which is reasonably explained by heterogeneity in
radiosensitivity (and perhaps heterogeneity in other factors, such
as spatial dose distribution [25–27]).

First, we conclude that because the formalisms which attempt
to describe the tumor dose response at SRT doses by explicitly
accounting for unique high-dose-specific tumoricidal mechanisms
fit the data much worse than the heterogeneous LQ formalism
which assumes the same mechanisms at all doses, there is no evi-
dence from SRT tumor control data that the proposed
high-dose-specific mechanisms dominate tumor control at high
doses and/or at small fraction numbers. Rather, the effects of
heterogeneous radiosensitivity dominate the comparatively subtle
differences between the dose–response shapes produced by differ-
ent radiobiological models [41]. In short, even if there are unique
tumoricidal mechanisms at play at high doses, they are not the
major determinants of tumor control by SRT.

Second, based on analyzing the data with the heterogeneous LQ
model (including heterogeneity), there was no evidence that
single-fraction SRT produces better tumor control than
multi-fraction regimens. Instead, multi-fraction brain SRT was pre-
dicted to produce slightly better TCPs than single-fraction treat-
ments for brain metastases. These conclusions are consistent
with expected effects on hypoxic tumors, where fractionation
allows tumor reoxygenation between fractions [41–43].
Please cite this article in press as: Shuryak I et al. High-dose and fractionation e
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The strengths of our study include: (1) use of large amount of
clinical data (from 2965 SRT-treated patients); (2) use of multiple
radiobiological models, some of which (LQ) assume that the same
tumoricidal mechanisms determine TCP at all doses and fraction
numbers, whereas others (LQL, USC, PLQ) explicitly account for
potential high-dose-specific tumoricidal mechanisms; and (3) use
of a robust criterion (AICc) to compare support from the data for
each of these models [33,34]. The main weaknesses (which are
inherent in most similar analyses) involve: (1) fitting summary
data vs. individual-patient data; and (2) oversimplification of
tumor radiation response by not accounting for effects of tumor
size and stage, time after SRT when TCP was reported, patient
age and sex, calendar year and institution-specific factors, and
many other potential effects. However, because these weaknesses
are the same for all considered models, relative comparison of
model fit quality can provide insights into how well (or how
poorly) does each model capture the main features of tumor
response to SRT.

In summary, the TCP data from modern SRT can be reasonably
described by models which assume that the same tumoricidal
mechanisms determine TCP at all doses and fraction numbers.
Consequently, the use of such models remains a clinically success-
ful and mechanistically plausible approach for guiding radiother-
apy design.
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Appendix A

A.1. Radiobiological models

A.1.1. Linear quadratic (LQ) model
The LQ model is a mechanistic consequence of repair/misrepair

kinetics of radiation-induced DNA double strand breaks (DSBs)
[76,77]. Differences in fractionation response between tissues
[78] are quantified through differences in the ratio of parameters
a and b, and this ratio (here labeled as r = a/b for convenience)
can be directly derived from clinical data.

The LQ formalism postulates that the fraction of cells which sur-
vive an acute radiation dose d is determined by the following
expression [79,80].

Slq ¼ exp½�ad� a=rd2� ðA1Þ

For simplicity, we assume that the heterogeneity in tumor cell
radiosensitivity applies to the linear term (a) of the LQ model,
because this term was shown to be most influential numerically
[23,25,81]. Mathematically, this is implemented as follows.

We introduce a dummy variable a, which is randomly dis-
tributed, from zero to infinity, according to the Gamma distribu-
tion, with a mean value of a and a shape parameter g (restricted
to integers P2 for convenience). The Gamma distribution was
selected instead of the Gaussian distribution because, consistently
with biological plausibility, it converges to zero at a = 0 (whereas
the Gaussian distribution does not), and generates a simple ana-
lytic solution for TCP for several tested models (see below).

The probability density function (PDF) is:

PDF ¼ a gexp½�ðg þ 1Þa=a�ðg þ 1Þðgþ1Þ
=ðaðgþ1Þg!Þ ðA2Þ

The clonogenic survival probability (Shet) for the heterogeneous
population of tumor cells exposed to a radiotherapy regimen com-
posed of m acute dose fractions with d Gy per fraction (and assum-
ing sufficient time for complete DNA damage repair between
fractions) is calculated as follows:
ffects in stereotactic radiation therapy: Analysis of tumor control data from
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Shet ¼
Z 1

0
PDF Slqda ¼ exp½ðg þ 1Þlnðg þ 1Þ�rðgþ1Þ=ðamdðdþ 1Þ

þ rðg þ 1ÞÞðgþ1Þ ðA3Þ

Alternatively, Shet can also be expressed as function of BED
calculated using the LQ model:

Shet ¼ ðg þ 1Þðgþ1Þ
=ðaBEDþ g þ 1Þðgþ1Þ ðA4Þ

We assume that tumor control occurs when all tumor clono-
gens (i.e., cells capable of repopulating the tumor) have been killed,
and that the number of such clonogens at the end of radiotherapy
is Poisson distributed with a mean of N Shet, where N is the number
of clonogens before treatment. The predicted TCP for the LQ model
with heterogeneity is then given by the following expression:

TCPhet ¼ exp½�NShet� ðA5Þ
A.1.2. Linear quadratic linear (LQL) model
The Linear Quadratic Linear (LQL) [29,30] model was developed

to modify the LQ model through the replacement of the continu-
ously bending terminal part of the dose response curve for the log-
arithm of cell survival by the corresponding exponential cell
inactivation mode. This was accomplished by modification of the
‘‘G-factor’’ which represents damage repair between radiation dose
fractions. The resulting equation for the average number of lethal
events per cell is as follows, where a, r and p1 are adjustable
parameters:

adþ 2a=rðp1d� 1þ exp½�p1d�Þ=p2
1 ðA6Þ
A.1.3. Universal survival curve (USC) model
In the USC model, the transition from curved to straight dose

response for the logarithm of cell survival is done by introducing
a cut-off or transition dose by means of the discontinuous,
Heaviside step function. The resulting equation for the average
number of lethal events per cell is:

adþ ad2
=r for d � rð1� ap1Þ=ð2ap1Þ; and

d=p1 � rð1� ap1Þ
2
=ð4ap2

1Þ for d > rð1� ap1Þ=ð2ap1Þ ðA7Þ
A.1.4. Pade linear quadratic (PLQ) model
In the PLQ model, the dose response shape is gradually altered,

becoming less curved at high doses, by the presence of a term
1 + p1 d in the denominator of the function for the average number
of lethal events per cell is:

ðadþ ad2
=rÞ=ð1þ p1dÞ ðA8Þ
A.1.5. Model parameters
Exploratory calculations using the LQ model with heteroge-

neous tumor cell radiosensitivity showed that increasing the initial
number of tumor clonogenic cells (N) and/or decreasing the a/b
ratio (r) generally decreased fit quality (increased the Akaike infor-
mation criterion with sample size correction (AICc) [33,34]).
Consequently, low values of N and high (effectively infinite) values
of r were preferred in unrestricted fits, but sensitivity to these
parameters was much lower than to a. To maintain biological plau-
sibility and simplify the model, we restricted r to 10 Gy and N to
105 clonogens.

Eqs. (A6)–(A8) were used to calculate TCP for the LQL, PLQ and
USC models in the same manner as described for the LQ model in
Eq. (A5). Mathematically, this involved replacing the LQ
model-based cell killing term LF = (a d + ar d2) from Eq. (A1) with
the corresponding term from the alternative model, where p1 is
an additional adjustable parameter (with different meaning and
Please cite this article in press as: Shuryak I et al. High-dose and fractionation e
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different units in each model). We applied the same parameter
restrictions to these models as to the LQ model described above.

In the heterogeneous versions of each model, the shape param-
eter g for the Gamma probability distribution of a values is an addi-
tional adjustable parameter. Values of 2 < g < 6 were preferred in
unrestricted exploratory fits, but sensitivity to g in this range
was much lower than to a. To maintain biological plausibility for
the width of the distribution of a values, we restricted g to 5. The
resulting distribution approximates a ‘‘bell-shaped’’ curve.

The only remaining parameter in the heterogeneous LQ model
was therefore a, which could be interpreted as a measure of tumor
radiosensitivity. We followed the same rationale for restricting
parameters in alternative radiobiological models. The LQL, USC,
and PLQ models each contain parameters analogous to b or to
a/b from the LQ model. We restricted these analogous parameters
to correspond to the condition r = 10 Gy. Parameter N was set to
105 for all models.

Consequently, the homogenous LQL, USC, and PLQ models each
contained two adjustable parameters: a and a model-specific
high-dose modification term (p1). Heterogeneous versions of these
models contained an extra parameter (g). Thus, for the purposes of
calculating AICc scores, the total number of adjustable parameters
was 2 for the LQL, PLQ, USC, and heterogeneous LQ models, and 3
for the heterogeneous LQL, PLQ, and USC models.

Exploratory calculations showed that the best fits (lowest AICc
values) for all models to lung data were produced using isocentral
SRT doses. For brain data the trend was reversed: peripheral doses
produced better fits, but the difference in fits using peripheral or
isocentral doses was not as great as for the lung. Consequently,
we selected isocentral doses as the default for our analysis for both
lung and brain data. The main conclusions (described below) were
not changed if peripheral doses were used.

A.1.6. Exploration of heterogeneity using alternative models
An analytic solution was produced for the heterogeneous PLQ

model, along the same lines as for the LQ model described above.
For the heterogeneous LQL and USC models, numerical integra-
tion was necessary. In addition, we performed exploratory calcu-
lations using the same models, but assuming that the
heterogeneity applies to radiosensitivity of tumors in different
patients, rather than to the radiosensitivity of tumor cells within
a patient. For this inter-tumor heterogeneity scenario, one expo-
nentiation is carried inside the integral, which leads to the fol-
lowing equation:

TCPhetðinterÞ ¼
Z 1

0
PDFe�NShet da ðA9Þ

Eq. (A9) has no analytic solution and needed to be evaluated numer-
ically for all models
Appendix B

B.1. Use of the akaike information criterion with correction for sample
size (AICc)

AICc is rooted in information theory, and assesses how much
Kullback–Leibler information is lost when each tested model is
used to approximate the data. The model that loses the least
amount of information relative to other compared models is con-
sidered the best. The equation for AICc is below, where LL is the
log likelihood (the maximized value, produced by best-fit parame-
ter values), q is the number of model parameters, and Ns is sample
size (number of patients):
AICc ¼ �2LLþ 2qþ 2qðqþ 1Þ=ðNs� q� 1Þ ðB10Þ
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One of the most convenient features of using AICc is that it
allows the evidence for multiple structurally distinct models to
be compared. For example, consider i = 1. . .n compared models.
The relative likelihood of the (ith) model, called the evidence ratio
(Er(i)), can be expressed as:

ErðiÞ ¼ exp½�DAICcðiÞ=2�; where DAICcðiÞ ¼ AICcðiÞ � AICcðminÞ

ðB11Þ

Here AICcmin is the lowest AICc value generated by the set of n
models being compared. If DAICc(i) > 6, then the evidence ratio
Er(i) < 0.05, suggesting that the tested model has poor support from
the data relative to the best-fitting model in the set of models
being compared.

The Akaike weight, w(i), is another useful quantity – it repre-
sents the probability that the tested model would be considered
the best-fitting model upon repeated sampling of the data. It is a
normalized evidence ratio, i.e. the evidence ratio for the tested
model divided by the sum of the evidence ratios for all the models
being compared:

wðiÞ ¼ ErðiÞ
Xn

i¼1

ErðiÞ

,
ðB12Þ
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